SECOND TERM WEEKLY LESSON NOTES WEEK I

Week Ending: 06-04-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Number	
Class: B8		Class Size:		Sub Strand: Fractions	
Content Standard: B8.I.3.I Apply the understanding of operation on fractions to solve problems involving fractions of given quantities and round the results to given decimal and significant places.			Indicator: B8.I.3.I.I Review fractions and solve problems involving basic operations on fractions		Lesson: I of I
Performance Indicator: Learners can review fractions and solve problems involving basic operations on fractions				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 102					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Engage learners in simple brain teaser. Example: I have GH\$200, and I want to give half of it to my son for transport. How much will I give to my son? Learners in pairs discuss the question and find the answer. Ask them to share their answers with the class. Share performance indicators and introduce the lesson.				
PHASE 2: NEW LEARNING	Review Engage the frac \square Learner Write fraction So $\frac{2}{3}=\frac{4}{6}$ Demon Find a c denomin $\frac{6}{10}=$ Have lea	oncept of fr rs to shade haded in th eir groups on the bo $\frac{8}{12}$ how to ex n a factor without a r	ctions. given frac shape: i. ade give d and guid ress the hat can did minder. followin	of squares in a shape or find ade $\frac{3}{4}$ of the rectangle. actions of squares. learners to find 3 equivalent on $\frac{6}{10}$ in its simplest form. the numerator and e can use 2 ctions in its simplest form.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	I. $\frac{6}{10}$	4. $\frac{4}{12}$	
	2. $\frac{12}{18}$	5. $\frac{8}{14}$	
	3. $\frac{16}{20}$		
	Guide learners to express fractions as a mixed number.		
	Example $\frac{12}{5}=2 \frac{2}{5}$		
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION	learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.		

	We must change the numerators and denominators before we can add the fractions. The new denominator will be the LCM, 8. We will rewrite each fraction as an equivalent fraction with denominator 8. Solve the problem on the board: $\frac{3}{4}+\frac{1}{8}=\frac{6}{8}+\frac{1}{8}=\frac{6+1}{8}=\frac{7}{8}$ Learners subtract the following fractions and simplify their answers. I. $\frac{4}{5}-\frac{3}{5}$ 2. $\frac{6}{7}-\frac{4}{7}$ 3. $\frac{3}{4}-\frac{3}{4}$ 4. $\frac{2}{4}-\frac{2}{3}$ 5. $\frac{3}{4}-\frac{1}{3}$ Multiplying a whole number by a fraction, e.g. $5 \times \frac{2}{3}$ or finding five two-thirds means $\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{10}{3}=3 \frac{2}{3}$ To multiply a whole number by a mixed fraction (e.g. $3 \times 2 \frac{2}{3}$) one can multiply the whole number by the whole number and then whole number by the fraction and add the products or change the mixed fraction to improper fraction and multiply; $\begin{aligned} & \text { i.e. } 3 \times 2 \frac{2}{3}=(3 \times 2)+\left(3 \times \frac{2}{3}\right) \\ & =6+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=6 \frac{6}{3} \end{aligned}$ To multiply a whole number by a fraction $\text { (e.g. } 3 \times 2 \frac{2}{3} \text {) }$ first change all into common fractions, then multiply the numerators separately and multiply the denominators separately and simplify; i.e. $3 \times 2 \frac{2}{3}=\frac{3}{1} \times \frac{8}{3}=\frac{3 \times 8}{1 \times 3}=3 \frac{24}{3}=8$ Multiplying a fraction by a whole number the multiplication is interpreted as "of"; e.g. $\frac{2}{3} \times 5$ means shade $\frac{2}{3}$ of 5 ; i.e. finding two-thirds of each of five objects; i.e. $\frac{2}{3} \times 5$ can be illustrated by shading $\frac{2}{3}$ of 5 sheets of paper, which leads to the shading of 10 thirds, $\frac{2}{3} \times 5=$ $\frac{2}{3}$ of $5=10\left(\frac{1}{3}\right)=\frac{10}{3}=3 \frac{1}{3}$ To multiply a mixed fraction by a whole number (e.g. $4 \frac{4}{5} \times 5$) First change all into common fractions, then multiply the numerators separately and multiply the denominators separately and simplify; i.e. $4 \frac{4}{5} \times 5=\frac{24}{5} \times \frac{5}{1}=\frac{120}{5}=\frac{24}{1}=24$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 2

Week Ending: 14-04-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Number	
Class: B8		Class Size:		Sub Strand: Powers Of Natural Numbers	
Content Standard: B8.I.2.3 Demonstrate understanding and the use of the laws of indices in solving problems involving powers of natural numbers			Indicator: B8.I.2.3.4 Solve real life problems involving powers of natural numbers.		Lesson: I of 2
Performance Indicator: Learners can solve real life problems involving powers of natural numbers				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 102					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Guide learners to solve exponential equations and Solve real life problems involving powers of natural numbers I. A person has a piece of land that is 50 meters long and 30 meters wide. How many square meters is the land? Solution: The area of the land is given by the product of its length and width, so we have: Area $=50 \mathrm{~m} \times 30 \mathrm{~m}=1500 \mathrm{~m}^{2}$ Therefore, the land has an area of 1500 square meters. 2. A car travels at a speed of $60 \mathrm{~km} / \mathrm{h}$ for 3 hours. How far does the car travel? Solution: The distance travelled by the car is given by the product of its speed and time, so we have: Distance $=$ Speed \times Time $=60 \mathrm{~km} / \mathrm{h}$ $\times 3 \mathrm{~h}=180 \mathrm{~km}$ Therefore, the car travels 180 kilometers. 3. A building has 10 floors, each with a height of 3 meters. How high is the building? Solution: The total height of the building is given by the product of the height of each floor and the number of floors, so we have: Height $=10 \times 3 \mathrm{~m}=30 \mathrm{~m}$ Therefore, the building is 30 meters high. 4. A recipe calls for 2 cups of flour, $\mathrm{I} / 2$ cup of sugar, and $\mathrm{I} / 4$ cup of butter. If you want to make twice the recipe, how much flour do you need? Solution: If we want to make twice the recipe, we need to double the amount of each ingredient. So we have: Flour $=2$ cups $\times 2=4$ cups Sugar $=1 / 2$ cup $\times 2=1$ cup Butter $=1 / 4 \operatorname{cup} \times 2=1 / 2$ cup Therefore, we need 4 cups of flour to make twice the recipe.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	5. A container of juice contains I liter of juice. If we pour I/4 of the juice into a glass, how much juice is left in the container? Solution: If we pour I/4 of the juice into a glass, we are left with $3 / 4$ of the juice in the container. So we have: Juice left in container $=\mathrm{I} \mathrm{L} \mathrm{L}$ $\times 3 / 4=0.75 \mathrm{~L}$ Therefore, there is 0.75 liters of juice left in the container Assessment Guide learners to solve real-life problems on populations. While studying her family's history, Saratu discovers records of ancestors I2 generations back. She wonders how many ancestors she has had in the past I2 generations. She starts to make a diagram to help her figure this out. The diagram soon becomes very complex Through illustrations, make a table and a graph showing the number of ancestors in each of the I2 generations. ii. Write an equation for the number of ancestors in a given generation n.	
	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.	
PHASE 3: REFLECTION		

Week Ending: 14-04-2023		DAY:		t: Mathematics	
Duration: 60MINS				Strand: Algebra	
Class: B8		Class Size:	Sub Strand: The Gradient Of A Line		
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation, graph the relation in a number plane, determine the gradient of the line and use it to write equation of a line of the form $y=m x+c$.			Indicator: B8.2.I.I.I Calculate the gradient of a line and use it to write equation of a line of the form $y=m x+c$.		(exson:
Performance Indicator: Learners can calculate the gradient of a line and use it to write equation of a line of the form $y=m x+c$				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. II2					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Explain the concept of gradient using real life examples and to discover the practical meaning of gradient. The gradient is the measure of how steep the hill the rider is climbing is. The gradient is the slope (or steepness) of the roofing of the building. Determine the formula for calculating the gradient of a line. The formula for calculating the gradient of a straight. $\frac{\Delta y}{\Delta x}=\frac{y 2-y 1}{x 2-x 1}$ Determine the gradient when given two coordinates. Find the gradient of a line which passes through the point; i. $A(I, I)$ and $B(7,2)$ ii. $P(-2,4)$ and $Q(3,5)$ iii. C $(3,-2)$ and $D(-3$, 4) Determine the gradient of a straight line when its equation is given. Find the gradient from the equation of the straight line below. I. $y=5 x+13$				Counters, bundle and loose straws base ten cut square, Bundle of sticks

2. $2 x-8 y+3=0$ 3. $y=-3 x+12$ Determine the gradient from a graph. From the graph, the coordinates are $\mathrm{A}(-8,-2), \mathrm{B}(2,3)$. $m=\frac{-2-3}{-8-2}=\frac{-5}{-10}=\frac{1}{2}$ The gradient of the line is $\frac{1}{2}$ Determine the slope-intercept form of the equation of a straight line Hint: The equation of a straight line in slope-intercept form is $y=$ $\mathrm{mx}+\mathrm{c}$. Find the equation of a line with slope 2 and y-intercept -3 . Hence find the value of y when x is 4 . Find the equation of a line in slope-intercept form having y-intercept $\frac{7}{2}$ and slope $-\frac{5}{2}$ Find the equation of a line with slope $\frac{1}{2}$ and y-intercept 4 E.g. 7 Determine the point-slope form of the equation of a straight line Hint: The point-slope form of the equation of a straight line is $y-y_{1}=m\left(x-x_{1}\right)$ Find the equation of a line with slope $\frac{2}{3}$ that passess through the point (3, -I) Find the equation of a line that passes through the point $(3,-7)$ and has the slope $m=\frac{5}{4}$ Find the equation of a line which passes through the points $(5,4)$ and (-10, 2).	

	Write the equation $5 x+4 y-3=0$ in the form $y=m x+c$. Hence state the gradient and the intercept.	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.	

SECOND TERM WEEKLY LESSON NOTES WEEK 3

Week Ending: 14-04-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Linear Relations	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.I.I. 2 Use graph of a linear relation to determine subsequent missing elements in the ordered pairs of the relation		Lesson: I of 2
Performance Indicator: Learners can use graph of a linear relation to determine subsequent missing elements in the ordered pairs of the relation			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 115-116				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learners to use graph of a linear relation to determine subsequent missing elements in the ordered pairs of the relation. Write a sample question on the board and take learners through its solution. Use information from a graph to find missing elements. The graph represents the relation $y y=20 x x$, where y is the cost (in Ghana cedis) of the weight (in kilograms) of meat sold in a market. Use the graph to find: i. the cost of 3.5 kg of meat ii. the weight of meat that can be bought with GH\$80.			Counters, bundle and loose straws base ten cut square, Bundle of sticks

Week Ending: 14-04-2023		DAY:			Subject: Mathematics			
Duration: 60MINS					Strand: Algebra			
Class: B8		Class Size:			Sub Strand: Linear Relations			
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation				Indicator: B8.2.I.I. 3 Use graphs of linear relations to solve real life problems				Lesson: 2 of 2
Performance Indicator: Learners can use graphs of linear relations to solve real life problems						Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. II7								
Phase/Duration	Learners Activities						Resources	
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.							
PHASE 2: NEW LEARNING	Guide lea problems Write a s solution. Every mo modelled kilometer Make a ta how far y Copy and Distance Time Nhyira pa how much portrait.	the equ h is for the ve walk mplete	aphs on th a w d = umbe tion a ter 6 h able f 2 peop ased to ans	linea board The , wh f hou draw urs. the r 3 for a how the	rel and dista red s yo a gr latio living ong ques	ns le yo e W with 5	Counters, bundle and loose straws base ten cut square, Bundle of sticks	

	How much does she charge for a portrait that takes 3 hours to paint? ii. Is she charges $\mathrm{GH} \mathbb{I}$ I75, how many hours did she use to paint the portrait? iii. How many hours will she require to paint a portrait that cost GH©300?	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

SECOND TERM WEEKLY LESSON NOTES WEEK 4

Week Ending: 28-04-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I.I Use the distributive property to remove brackets and solve multiplication of binomial expression		Lesson: I of 2
Performance Indicator: Learners can use the distributive property to remove brackets and solve multiplication of binomial expression			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. II5-116				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learner Expanding exp an expression. To expand a giv Multiply every brackets. Change the o Write this que Expand -5x (3x Solution $\begin{aligned} & -5 x(3 x+4)= \\ & =-15 x^{2}-20 x \end{aligned}$ So the expand Let learners a) $3(x+4)$ b) $2(6-5 x)-$ Solution To simplify 3(the terms insid $3(x+4)-2(x$ Next, we can	s to explain Expanding ression is a way of removin given expression; term inside the bracke erators accordingly and estion on the board and $x+4)$ $-5 x(3 x)-5 x(4)$ ded form of $-5 x(3 x+4)$ olve the following $\begin{array}{r} -2(x-5) \\ 3(2+2 x) \end{array}$ $x+4)-2(x-5)$, we firs de the parentheses: $-5)=3 x+12-2 x+10$ combine like terms:	on. ets or parenthesis from e term outside the ne the terms. arners to solve in pairs. 2-20x. ute the 3 and -2 across	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	$3 x-2 x+12+10=x+22$ Therefore, the simplified form of $3(x+4)-2(x-5)$ is $x+22$. Guide learners to multiply binomial expressions. To multiply two binomial expressions, you can use the FOIL method, which stands for First, Outer, Inner, Last. I. Multiply the first term of each binomial together. 2. Multiply the outer terms of each binomial together. 3. Multiply the inner terms of each binomial together. 4. Multiply the last term of each binomial together. 5. Add the results of steps I-4 to obtain the final product. Write this example on the board and let learners solve in pairs: $(3 x+2)(2 x-5)$ Using the FOIL method, we get: First: $(3 \mathrm{x})(2 \mathrm{x})=6 \mathrm{x}^{2}$ Outer: $(3 x)(-5)=-15 x$ Inner: $(2)(2 x)=4 x$ Last: (2)(-5) $=-10$ Adding the results of steps $1-4$, we get: $6 x^{2}-15 x+4 x-10$ Simplifying, we get: $6 x^{2}-11 x-10$ Therefore, the product of $(3 x+2)(2 x-5)$ is $6 x^{2}-11 x-10$. Learners work in groups to solve the following. a) $(y+3)(y+7)$ b) $(k-4)(k+10)$ c) $(2 x+5)(3 x-1)$ d) $(x-5)(6 x+12)$ e) $(2 t+3)(3 t-1)$	
$\begin{aligned} & \hline \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 28-04-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I.I Use the distributive property to remove brackets and solve multiplication of binomial expression		Lesson: I of 2
Performance Indicator: Learners can use the distributive property to remove brackets and solve multiplication of binomial expression			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 115-116				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learner To multiply two stands for First, I. Multiply the 2. Multiply the 3. Multiply the 4. Multiply the 5. Add the resu Write this exa $(3 x+2)(2 x-5)$ Using the FOI First: (3 x)(2x) Outer: (3x)(-5) Inner: (2)(2x) Last: $(2)(-5)=$ Adding the re $6 x^{2}-15 x+4 x$ Simplifying, we $6 x^{2}-11 x-10$ Therefore, the Learners work $(y+3)(y+7)$ (k-4) $(k+10)$ $(2 x+5)(3 x-1)$ $(x-5)(6 x+12)$ ($2 t+3$) $(3 t-1)$	s to multiply binomial exp binomial expressions, yo Outer, Inner, Last. first term of each binomia outer terms of each binom inner terms of each binom last term of each binomia ults of steps I-4 to obtain ample on the board and 5) L method, we get: $\begin{aligned} & =6 x^{2} \\ & 5)=-15 x \\ & =4 x \\ & =-10 \end{aligned}$ sults of steps I-4, we get - 10 get: product of $(3 x+2)(2 x$ k in groups to solve the	ns. the FOIL method, which er. ther. ther. er. product. ners solve in pairs: $6 x^{2}-11 x-10$ g.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

SECOND TERM
 WEEKLY LESSON NOTES
 WEEK 5

Week Ending: 05-05-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Addition, Subtraction Of Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I. 2 Perform addition, subtraction, multiplication and division of algebraic expressions including fractions		Lesson: I of 2
Performance Indicator: Learners can perform addition, subtraction, multiplication and division of algebraic expressions including fractions			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 115-116				
Phase/DurationPHASE I:STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Guide learner division of alge To use the PE - Simplify any - Evaluate any - Perform - Perform Write an exam Simplify $10 x^{2}$ Solution To simplify th PEMDAS strat Simplify any ex $(6 x-4 x)=2 x$ $(5 x-2 x)^{2}=(3 x)^{2}$ Now the expr $10 x^{2}+2 x-9 x$ $10 x^{2}-9 x^{2}+2 x$ $=x^{2}+2 x$. Therefore, the Example 2: so $=(2 y)^{2}-2(2 y)$	s to solve addition, subtractio ebraic expression using the PED MDAS strategy, follow these ny expressions inside parenth ny exponents next. multiplication and division, from ddition and subtraction, from mple on the board and task le $+(6 x-4 x)-(5 x-2 x)^{2}$ expression $10 x^{2}+(6 x-4 x)-$ egy, we follow the order of xpressions inside parentheses $3 x)^{2}=9 x^{2}$ ession becomes: x^{2} simplified expression is $x^{\wedge} 2$ lve $(7 y-5 y)^{2}-2(10 y-8 y)+4 y$ $+4 y$	multiplication and MAS strategy. eps: first. left to right. ft to right. ners to work in pairs. $(5 x-2 x)^{2}$ using the erations as follows: st: $2 x$.	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	$=\frac{\left(2 x^{2}+2 x\right)}{\left(x^{2}-4 x\right)}$ We can simplify this by factoring out a $2 x$ from the numerator and $a x$ from the denominator: $=\frac{2 x(x+2)}{x(x-4)}=\frac{2(x+2)}{x(x-4)}$ Example 2: Divide $\frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)} \div \frac{\left(2 x^{2}+8 x\right)}{\left(x^{2}-2 x\right)}$ Solution: First, simplify each fraction. We can factor out a $3 x$ from the numerator of the first fraction and factor out a $2 x$ from the numerator of the second fraction: $\begin{aligned} & \frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)}=\frac{3 x(x-3)}{(x-2)(x+2)} \\ & \frac{\left(2 x^{2}+8 x\right)}{\left(x^{2}-2 x\right)}=\frac{2 x(x+4)}{x(x-2)} \end{aligned}$ Now we can invert the second fraction and multiply it by the first: $\frac{\left(3 x^{2}-9 x\right)}{\left(x^{2}-4\right)} x \frac{x(x-2)}{2 x(x+4)}$ Multiplying the numerators gives us: $3 x(x-3)(x-2)$ Multiplying the denominators gives us: $2 x(x+4)(x-2)(x+2)$ So the final answer is: $\frac{3 x(x-3)(x-2)}{2 x(x+4)(x-2)(x+2)}$ We can simplify this by cancelling out the $(x-2)$ factor in the numerator and denominator: $\frac{3 x(x-3)}{2 x(x+4)(x+2)}$ Assessment I) $\frac{a}{7} \times \frac{b}{8}$ 2) $\frac{3 x-3}{4 x-4}$ 3) $\frac{a}{a b} \div \frac{1}{a}$ 4) $\frac{{ }_{7}^{a b}}{8 r} \times \frac{{ }_{2}^{a}}{5 r}$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 05-05-2023		DAY:	Subject: Mathemati	
Duration: 60MINS			Strand: Number	
Class: B8		Class Size:	Sub Strand: Algebraic Expressions	
Content Standard: B8.2.I.I Demonstrate the ability to draw table of values for a linear relation		Indicator: B8.2.2.I. 3 Substitute values to evaluate algebraic expressions including fractions and use these to solve problems.		Lesson: I of 2
Performance Indicator: Learners can substitute values to evaluate algebraic expressions including fractions and use these to solve problems			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. II9				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			
PHASE 2: NEW LEARNING	Guide learners to substitute values to evaluate algebraic expressions including fractions and use these to solve problems. Take learners through the steps in substituting values into algebraic expressions. To substitute values to evaluate algebraic expressions including fractions: I. Identify the variables in the expression that you want to substitute values for. 2. Replace each variable with the corresponding value. 3. Simplify the expression by performing any necessary arithmetic operations, such as addition, subtraction, multiplication, and division. Example, Evaluate the expression $(3 x-2) /(x+1)$ when $x=4$. I. The variable in this expression is x. 2. We replace x with the value 4 : $(3 x-2) /(x+1)=(3(4)-2) /(4+1)$ 3. Simplify the expression by performing the arithmetic operations: $(3(4)-2) /(4+1)=(10 / 5)=2$ Therefore, when $x=4$, the value of the expression $(3 x-2) /(x+1)$ is 2 . Example 2: Evaluate the expression $\frac{(2 x+3)}{(x-4)}$ when $x=5$. I. Identify the variable in the expression: x. 2. Replace x with the value 5 :			Counters, bundle and loose straws base ten cut square, Bundle of sticks

SECOND TERM WEEKLY LESSON NOTES WEEK 6

Week Ending: 12-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Alternate And Corresponding Angles	
Content Standard: B8.3.I.I Demonstrate understanding and use of the relationship between parallel lines and alternate and corresponding angles and use the sum of angles in a triangle to deduce the angle sum in any polygon			Indicator: B8.3.I.I.I Draw and determine the values of alternate and corresponding angles.		Lesson: I of 2
Performance Indicator: Learners can draw and determine the values of alternate and corresponding angles				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 123					
Phase/Duration	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				Resources
PHASE I: STARTER					
PHASE 2: NEW LEARNING	Revise with learners on how angles are formed. An angle is a measure of the space between two intersecting lines or surfaces, often measured in degrees or radians. It is formed when two lines or surfaces meet at a common point, called the vertex of the angle. Revise with learners on the types of angles. I. Acute Angle: An acute angle is an angle whose measure is between 0 and 90 degrees. 2. Right Angle: A right angle is an angle whose measure is exactly 90 degrees. It is often represented by a small square placed at the vertex of the angle. 3. Obtuse Angle: An obtuse angle is an angle whose measure is between 90 and 180 degrees. 4. Straight Angle: A straight angle is an angle whose measure is exactly 180 degrees. It is essentially a straight line. 5. Reflex Angle: A reflex angle is an angle whose measure is between 180 and 360 degrees. 6. Complementary Angles: Two angles are complementary if their measures add up to 90 degrees. 7. Supplementary Angles: Two angles are supplementary if their measures add up to 180 degrees. 8. Congruent Angles: Two angles are congruent if they have the same measure.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	
PHASE 3: REFLECTION		

Week Ending: 12-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Sum Of Interior Angles	
Content Standard: B8.3.I.I Demonstrate understanding and use of the relationship between parallel lines and alternate and corresponding angles and use the sum of angles in a triangle to deduce the angle sum in any polygon			Indicator: B8.3.I.I. 2 Determine the values of angles in a triangle using knowledge of the sum of interior angles in a triangle and other properties.		Lesson: 2 of 2
Performance Indicator: Learners can determine the values of angles in a triangle using knowledge of the sum of interior angles in a triangle and other properties.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 124					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Revise Guide triangle. Learners in a poly hexagon To derive start by triangles number the num For exam below:	arners on polygons s to calculate the va airs deduce the form and determine the va formula for the sum of g the polygon into tria awing all the possible ngles that result from sides in the polygon. pentagon can be divi	d the typ es of y and a for the e of an a terior ang les. Any p agonals from is division d into thr	of polygons. the angles in the m of interior angles e in a regular in a polygon, we can gon can be divided into one vertex. The always two less than triangles, as shown	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	From this diagram, we can see that the sum of the interior angles of the pentagon is equal to the sum of the interior angles of the three triangles. Each triangle has two interior angles that are shared with the other triangles and one angle that is unique to that triangle. Therefore, the sum of the interior angles of each triangle is 180 degrees, and the sum of the interior angles of the polygon is: Sum of interior angles $=$ (number of triangles) $\times 180$ degrees The number of triangles in the polygon is two less than the number of sides or vertices, so we can substitute $(n-2)$ for the number of triangles: Sum of interior angles $=(n-2) \times 180$ degrees where n is the number of sides or vertices in the polygon. Therefore, we have derived the formula for the sum of interior angles in a polygon, which is: Sum of interior angles $=(n-2) \times 180$ degrees. Learners to use the formula for finding the sum of interior angles in a polygon ($n-2$) 180 to determine the value of x in the hexagon.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

SECOND TERM WEEKLY LESSON NOTES WEEK 7

Week Ending: 19-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Construct \& Bisect Angles	
Content Standard: B8.3.I. 2 Demonstrate the ability to perform geometric constructions of the angles $\left(75^{\circ}, 105^{\circ}\right.$, $60^{\circ}, 135^{\circ}$ and 150°), and construct triangles and find locus of points under given conditions.			Indicator: B8.3.1.2.I Construct and bisect angles of $120^{\circ}, 105^{\circ}, 135^{\circ}$ and 150°		Lesson: I of 2
Performance Indicator: Learners can construct and bisect angles of $120^{\circ}, 105^{\circ}, 135^{\circ}$ and 150°				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 123					
PHASE I: STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				Resources
PHASE 2: NEW LEARNING	Use a pair of compasses and a ruler, guide learners to construct angles of $120^{\circ}, 105^{\circ}, 135^{\circ}$ and 150° To Construct an angle of 120° - Draw a ray OA. - With O as center and any suitable radius draw an arc cutting OA at B. - With B as center and the same radius cut the arc at C, then with C as center and same radius cut the arc at D. Join OD and produce it to E. Then, $\angle A O E=\mathbf{1 2 0} \mathbf{}^{\circ}$. To Construct an angle of 105° - Take any ray OA. - With O as center and any convenient radius, draw an arc cutting $O A$ at B. - With B as center and the same radius, draw an cutting the first arc at C.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Assessment Using a pair of compasses and a ruler only, construct the following angles; $120^{\circ}, 105^{\circ}, \mathrm{I} 35^{\circ}$ and $\mathrm{I} 50^{\circ}$		
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.		

Week Ending: 19-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Construct Of Triangles	
Content Standard: B8.3.I. 2 Demonstrate the ability to perform geometric constructions of the angles $\left(75^{\circ}, 105^{\circ}, 60^{\circ}, 135^{\circ}\right.$ and 150°), and construct triangles and find locus of points under given conditions			Indicator: B8.3.I.2.2: Construct scalene triangles, isosceles triangles, equilateral triangles, obtuse-angled triangle, and acute-angled triangles in different orientations under given conditions.		Lesson: $2 \text { of } 2$
Performance Indicator: Learners can determine the values of angles in a triangle using knowledge of the sum of interior angles in a triangle and other properties.				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 127-132					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Gide learners to use a pair of compasses and a ruler to construct an equilateral triangle when a side is given and justify why it is an equilateral triangle - Draw a straight line segment to serve as the base of your triangle. Label the endpoints as points A and B. - Use a ruler to measure the length of the given side. Let's say the length is " a ". Mark a point C on the line segment $A B$, at a distance of "a" from point A. - With a compass, set the width to the length "a". Place the compass tip on point C and draw an arc that intersects the line segment $A B$. Label the intersection points as D and E. - Without changing the compass width, place the compass tip on point D and draw another arc that intersects the arc drawn in the previous step. Label the intersection point as F. - Draw a straight line connecting point C and point F. - Draw a straight line connecting point F and point B. Guide learners to use a pair of compasses and a ruler to construct an equilateral triangle - Draw a straight line segment to serve as the base of your triangle. Label the endpoints as points A and B. - Use a ruler to measure and mark a second point, C, on the same line but at a different distance from point A than point B. This will determine the length of one side of the triangle.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

SECOND TERM WEEKLY LESSON NOTES WEEK 8

Week Ending: 26-05-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Geometry \& Measurement	
Class: B8		Class Size:		Sub Strand: Construct \& Bisect Angles	
Content Standard: B8.3.I. 2 Demonstrate the ability to perform geometric constructions of the angles $\left(75^{\circ}, 105^{\circ}\right.$, $60^{\circ}, 135^{\circ}$ and 150°), and construct triangles and find locus of points under given conditions.			Indicator: B8.3.1.2.3: Construct loci		Lesson: I of 2
Performance Indicator: Learners can construct loci				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. I33-14\|					
Phase/Duration	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				Resources
PHASE I: STARTER					
PHASE 2: NEW LEARNING	Have learners understand that a 'locus' refers to the set of all points that satisfy a specific geometric condition. It represents the path or trajectory followed by a point or object under certain constraints or rules. The concept of locus is often used in geometry to describe the collection of points that satisfy a given property. For example, the locus of points equidistant from two fixed points is a straight line called the perpendicular bisector. Similarly, the locus of points equidistant from a fixed point is a circle. Demonstrate how to construct a loci I. Identify the condition: Determine the specific condition or property that the points must satisfy. 2. Analyze the condition: Understand the requirements of the condition or property. Break it down into simpler components if needed. For example, if the condition involves the distance between points, consider the distances involved and their relationships. 3. Use geometric tools: Depending on the condition, utilize geometric tools such as rulers, compasses, protractors, or specific geometric constructions to help determine and visualize the locus.				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	4. Consider different scenarios: Explore different cases or variations of the condition to gain a better understanding of the locus. This might involve changing parameters or considering different possibilities within the condition. 5. Record the locus: Once you have determined the set of points that satisfy the condition, record or represent the locus appropriately. This could be by drawing the locus on a coordinate plane, labeling it with relevant equations or descriptions, or using mathematical notation to express the locus. 6. Verify and refine: After constructing the locus, verify that the points on the locus indeed satisfy the condition. If necessary, refine the construction by checking additional points or adjusting the construction based on any discrepancies found. Guide learners to construct loci under given conditions including: (i) the locus of sets of points from a fixed point; (ii) the locus of points equidistant from two fixed points; (iii) the locus of points equidistant from two intersecting straight lines, and (iv) the locus of points equidistant from two parallel lines. Describe the locus of a circle by tracing the path of a point P which moves in such a way that its distance from a fixed point, say O , is always the same to construct circles Perform geometric construction to locate the centre of a circle by locating the intersection of the perpendicular bisectors of any two chords on the circle Draw circles of given radii at the points as centre and chord. Construct a regular hexagon within a circle given the length of a side Assessment Use a pair of compasses and a ruler to construct a hexagon $A B C D E F$ such that $\|A B\|=6 \mathrm{~cm}$. Find the measure of the angles $A O B$ and compare to its value.	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 26-05-2023		DAY:	Subject: Mathematics	
Duration: 60MINS			Strand: Geometry \& Measurement	
Class: B8		Class Size:	Sub Strand: Construct Of Triangles	
Content Standard: B8.3.1.2 Apply the Pythagoras theorem, the primary trigonometric ratios and the formulas for determining the area of a circle to solve real problems.		Indicator: B8.3.2.I.I Use the relationship between the diameter and circumference of a circle to deduce the formula for finding its area, and use this to solve problems		Lesson: 2 of 2
Performance Indicator: Learners can use the relationship between the diameter and circumference of a circle to deduce the formula for finding its area, and use this to solve problems			Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 142				
Phase/Duration PHASE I: STARTER	Learners Activities Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.			Resources
PHASE 2: NEW LEARNING	Guide learners to use the relationship between the diameter and circumference of a circle to deduce the formula for finding its area. E.g.I: Divide a circle into sectors (minimum of 16) then cut the sectors and arrange to form a rectangle to deduce the area of the circle. Alternatively; The relationship between the diameter and circumference of a circle is given by the formula: $C=\pi d$ where C represents the circumference and d represents the diameter of the circle. From this relationship, we can deduce the formula for finding the area of a circle. We know that the circumference of a circle is the distance around its boundary, while the area of a circle is the measure of the region enclosed by the circle. To derive the formula for the area, we can			Counters, bundle and loose straws base ten cut square, Bundle of sticks

	make use of the fact that the circumference is directly related to the diameter. We start with the equation for the circumference of a circle: $C=\pi d$ We can rewrite the diameter in terms of the radius (r), which is half of the diameter: $d=2 r$ Substituting this expression for the diameter in the equation for the circumference, we get: $C=\pi(2 r)$ Simplifying further: $C=2 \pi r$ Now, we can use the relationship between the circumference and the radius to find the formula for the radius: $C=2 \pi r$ Dividing both sides of the equation by 2π : $C /(2 \pi)=r$ Now, let's focus on the formula for the area of a circle. The area (A) of a circle is given by the formula: $A=\pi r^{\wedge} 2$ Assessment Let learners solve problems on area of a circle. (i) Find the area of a circle whose radius is 14 cm (Take $\pi=22 / 7$). (ii) Find the area of a semi-circle whose radius is 7 cm (Take $\pi=$ 22/7) (iii) Two circles have a common center; the small circle has radius 7 cm , the big circle has radius 14 cm . Find the shaded area. (Take $\pi=$ 22/7).	
PHASE 3: REFLECTIO	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

SECOND TERM
 WEEKLY LESSON NOTES WEEK 9

Week Ending: 02-06-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Data	
Class: B8		Class Size:		Sub Strand: Statistics	
Content Standard: B8.4.I.I Select, justify, and use appropriate methods to collect data (quantitative and qualitative)			Indicator: B8.4.I.I.I Identify types of given data including numerical, categorical, ungrouped and grouped data		Lesson: I of 2
Performance Indicator: Learners can identify types of given data including numerical, categorical, ungrouped and grouped data				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 153					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Discuss, in small groups, information collected in the process of investigation which may be numeric. i. Numeric (and discrete): the number of Nissan cars sold by Japan Motors, Ghana in a year; the number of children in a family; the number of learners in B8 class. ii. Numeric (and continuous): the weights of babies in a crèche (e.g. 4.5 kg) which contains fractional values. Discuss (in groups) information collected in the process of investigation which may be non-numeric. i. Non-numeric (cannot be quantified): sex (male or female); income group, movie type, age group, marital status, boxers' weight class, etc. ii. Sort out the examples of the non-numeric information in (i) with values that can be put on ordinal scale (boxers' weight class; age group) iii. Sort out the examples of the non-numeric information in (i) That can be put into categories (Categorical data): sex (male or female); marital status; income group, etc. i. The scores for II learners in a class test are $25,30,35,40$, $45,26,29,50,45,37$ and 47(these individual scores are not grouped in any way).				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	ii. Find out those in the group 25 to 35 (i.e. 5) and those in the group 36 to 50 (i.e. 6) Data is now grouped	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

Week Ending: 02-06-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Data	
Class: B8		Class Size:		Sub Strand: Statistics	
Content Standard: B8.4.I.I Select, justify, and use appropriate methods to collect data (quantitative and qualitative)			Indicator: B8.4.I.I.I Identify types of given data including numerical, categorical, ungrouped and grouped data		Lesson: I of 2
Performance Indicator: Learners can identify types of given data including numerical, categorical, ungrouped and grouped data				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 153					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	Discuss, in small groups, information collected in the process of investigation which may be numeric. i. Numeric (and discrete): the number of Nissan cars sold by Japan Motors, Ghana in a year; the number of children in a family; the number of learners in B8 class. ii. Numeric (and continuous): the weights of babies in a crèche (e.g. 4.5 kg) which contains fractional values. Discuss (in groups) information collected in the process of investigation which may be non-numeric. i. Non-numeric (cannot be quantified): sex (male or female); income group, movie type, age group, marital status, boxers' weight class, etc. ii. Sort out the examples of the non-numeric information in (i) with values that can be put on ordinal scale (boxers' weight class; age group) iii. Sort out the examples of the non-numeric information in (i) That can be put into categories (Categorical data): sex (male or female); marital status; income group, etc. i. The scores for II learners in a class test are $25,30,35,40$, $45,26,29,50,45,37$ and 47(these individual scores are not grouped in any way).				Counters, bundle and loose straws base ten cut square, Bundle of sticks

	ii. Find out those in the group 25 to 35 (i.e. 5) and those in the group 36 to 50 (i.e. 6) Data is now grouped	
PHASE 3:	Use peer discussion and effective questioning to find out from REFLECTION learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.	

SECOND TERM
 WEEKLY LESSON NOTES WEEK 10

Week Ending: 09-06-2023		DAY:		Subject: Mathematics	
Duration: 60MINS				Strand: Data	
Class: B8		Class Size:		Sub Strand: Statistics	
Content Standard: B8.4.I.I Select, justify, and use appropriate methods to collect data (quantitative and qualitative)			Indicator: B8.4.I.I. 2 - Select and justify a method to collect data (quantitative and qualitative) to answer a given question.		Lesson: I of 2
Performance Indicator: Learners can identify types of given data including numerical, categorical, ungrouped and grouped data				Core Competencies: Communication and Collaboration (CC) Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 153					
Phase/Duration	Learners Activities				Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Share performance indicators with learners and introduce the lesson.				
PHASE 2: NEW LEARNING	E.g. I- To output of used to ga (i.e. refer i. Will eat crackers ii. Are peo iii. Does a are prese E.g. 2 -Sel appropria	udy how e ork (produ er the fact methods twice a p rease their e who eat oup of stu or absent? any study form to be	ting cream crac tivity), identify for each of the ated in E.g. 2 of son's normal n productivity? more cream cra ents study bett to be undertak used in collect	ers affects one's which method can be following situations. B7.4.I.I.I) mber of cream kers more productive? r when cream crackers and design an g data.	Counters, bundle and loose straws base ten cut square, Bundle of sticks
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.				

	In a mathematics quiz Cordei scored 75%, Kofi scored 80%, Maama scored 35%, Kpakpo scored 70% and Adjoa scored 50%. Draw a waffle chart to represent the data. E.g. 4. Make a stem and leaf plot (a stem-and-leaf display or stem-and-leaf plot is a method for presenting quantitative data in a graphical format to assist in visualizing the shape of a distribution and giving a great idea about the distribution of the data.) i. The data below are scores for 14 B8 learners in a test graded out of a maximum of 100. Make a stem and leaf plot to represent the data.23,58,62,62,63,65,67,7I,7I,72,82,82,82Stem Leaf 2 3 3 4 5 8 6 22357 7 112 8 0222 From the plot, what can we say about the performance of the I4 B8 learners? E.g. 5 - The stem and leaf plot shows the scores obtained by learners in a test. Use it to answer the following questions: i. What are the scores? Write them in ascending order. ii. What is the mode of the scores? iii. What is the median of the scores?	

	Stem Leaf $\mathbf{1}$ 5 2 0 3 55557 4 5 5 55 7 55 9 0	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.	

