SECOND TERM LESSON PLAN

MATHEMATICS - B7

WEEK I

Date: $13^{\text {th }}$ MAY, 2022 P		Period:	Subject: Mathematics	
Duration: 50MINS			Strand: Number	
Class: B7		Class Size:	Sub Strand: Ratios and Proportion	
Content Standard: B7.I.4.I Demonstrate an understanding of the concept of ratios and its relationship to fractions and use it to solve problems that involve rates, ratios, and proportional reasoning		Indicator: B7.I.4.I.I Find ratio and use ratio language to describe relationship between two quantities.		Lesson: I of 3
Performance Indicator: Learners can use ratio language to describe relationship between two quantities			Core Competencies:CP, CC	
References: Mathematics Curriculum Pg. 24-25				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Say: Count the number of chairs and tables (or benches and desks) in the classroom. Write the number of each on the board. (For example: 40 chairs and 10 tables) Ask: How many girls and how many boys are present today? Write the number of each on the board. (For example: 25 girls and 15 boys). Say: Today we will learn how to compare quantities in a ratio format.			
PHASE 2: NEW LEARNING	Guide learner Example: Draw 2 orang Say: to compa the words 'is Write on the Say: 2 oranges Allow learners repeatedly to	to determine r and 4 bananas oranges and b oard ' \because ' is to is to 4 bananas. to say '2 orang rasp the concep	io of given quantities. on the board: nanas we should use is to 4 bananas'	Counters, bundle and loose straws base ten cut square, Bundle of sticks

	Tell learners that the symbol for 'is to' is a colon (:). Say: We can now write 2 oranges is to 4 bananas as a ratio. (2:4) Learners to solve more examples. i. There are 60 boys and I 20 girls in a school. So the ratio of boys to girls in the school is $\frac{60}{120}=\frac{1}{2}$		
	Assessment I. Express two quantities as a ratio. i. The ratio of wings to beaks in the bird house at the Kumasi Zoo is 2:I, because for every 2 wings there is I beak. 2. Describe quantities with ratio language. i. The ratio of Musa to Alhasan's age is I:2. If Alhasan is 50 years old and his son, Musa is 25 years old, we can say that - Alhasan is twice as old as his son. - Musa is half the age of his father.		
Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.			
PHASE 3:			
REFLECTION feedback from learners and summarize the lesson.		\quad	
:---			

WEEK 2

Date: $20^{\text {TH }}$ MAY, 2022	Period:	Subject: Mathematics	
Duration: 50MINS		Strand: Number	
Class: B7	Class Size:	Sub Strand: Ratios and Proportion	
Content Standard: B7.I.4.I Demonstrate an understanding of the concept of ratios and its relationship to fractions and use it to solve problems that involve rates, ratios, and proportional reasoning		Indicator: B7.I.4.I. 3 Make tables of equivalent ratios (written as common fractions) relating quantities that are proportional.	Lesson:
Performance Indicator:		Core Competencies: Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 25-26			
Phase/Duration PHASE I: STARTER	Learners Activities		Resources
	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions. Introduce the lesson by sharing performance indicators.		
PHASE 2: NEW LEARNING	Guide learners to use of application of proportion in solving problems in maths. I. Find the total ratio. The ratio x :y gives you ($x+y$) 2. Find what one part is. Thus the part corresponding to x, y or z . the share corresponding to x can be found by using the fraction $\frac{x}{x+y}$. Similarly $\frac{y}{x+y}$ Example: Kafui, Adoley and Jantuah shared an amount of money in the ratio of their ages. Kafui is 36 years old, Adoley is 48years and Jantuah is 24years old. If Jantuah received GH\$24000, how much money did they share? First write down their ratios; $\text { Kafui : Adoley : Jantuah = } 36: 48: 24$ Their equivalent ratio will be $=3: 4: 2$ Find their total ratio $=9$ Now find what one part is: Jantuah $=24000$ that is $2: 24000$ let GHCa be the amount shared. Kafui's share $=\frac{3}{9} a \quad$ Adoley's share $=\frac{4}{9} a$		Counters, bundle and loose straws base ten cut square, Bundle of sticks

Date: $20{ }^{\text {TH }}$ MAY, 2022		DAY:		Subject: Mathematics		
Duration: 50MINS				Strand: Number		
Class: B7		Class Size:		Sub Strand: Ratios and Proportion		
Content Standard: B7.I.4.I Demonstrate an understanding of the concept of ratios and its relationship to fractions and use it to solve problems that involve rates, ratios, and proportional reasoning		Indicator: B7.I.4.I. 4 Use the proportional reasoning to find missing values in the tables, and plot pairs of values on the coordinate plane.				Lesson:
Performance Indicator: Learners can find missing values in the tables, and plot pairs of values on the coordinate plane				Core Competencies: Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 25-26						
Phase/Duration	Learners Activities					Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions. Introduce the lesson by sharing performance indicators.					
PHASE 2: NEW LEARNING	3 10 6 x 9 30 y 40 $=\frac{x}{6}=\frac{10}{3}$ means the value of $x=\frac{10}{3} \times 6=\frac{60}{3}=20$ Engage learners to practice with more examples. Assessment					Counters, bundle and loose straws base ten cut square, Bundle of sticks
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson. Take feedback from learners and summarize the lesson.					

SECOND TERM LESSON PLAN

MATHEMATICS - B7

WEEK 3

Date: $27^{\text {th }}$ MAY, 2022		DAY:	Subject: Mathematics	
Duration:			Strand: Number	
Class: B7	Class Size:		Sub Strand: Ratios and Proportion	
Content Standard: B7.I.4.I Demonstrate an understanding of the concept of ratios and its relationship to fractions and use it to solve problems that involve rates, ratios, and proportional reasoning.		Indicator: B7.I.4.I. 5 Find a percent of a quantity as a rate per 100.		Lesson: 3 of 3
Performance Indicator: Learners can find a percent of a quantity as a rate per 100			Core Competencies: Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 21				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions. Introduce the lesson by sharing performance indicators.			
PHASE 2: NEW LEARNING	Introduce learners to meaning of rates. Example: A rate is a ratio different units of measure. Guide learners to ex A unit rate is a rat or denominator. Example: Lisa ran 18 m Her average speed can $: \frac{18 \text { miles }}{3 \text { hours }}=18 \text { mile }$ To find how many mil equivalent ratios. So if 18 miles : 3 hour $\begin{aligned} & =\frac{18 \mathrm{miles}}{3 \text { hours }}=\frac{\chi \mathrm{mil}}{1 \mathrm{hou}} \\ & \rightarrow 18 \times \mathrm{I}=3 \times \chi \end{aligned}$	rates. Bra that comp press qu that has miles at a be expr : 3 hou Moya s , then χ es rs	orm learners for the two quantities with ities in rates. unit as its second term dy pace in 3 hours. d as a ratio: $=18$ miles in 3 hours in I hour, use es: I hour	Counters, bundle and loose straws base ten cut square, Bundle of sticks


	```- Commission \(=\) Rate of Commission \(\times\) Total Sales \(C=R \times T S\) - Total Earnings \(=\) Salary + Commission \(T E=S+C\)```   Example:   A salesman gets paid $35 \%$ commissions. How much commission does he make on sales of GH\$700?   To find the commission, $C$, write an equation and solve for the commission. $\begin{aligned} & C=35 \% \text { of } \phi 700 \\ & C=0.35 \times \not \subset 700 \\ & C=\neq 245 \end{aligned}$   Have learners practice with more examples.   Assessment   i. Three rides on the roller coaster cost $\$ 2.25$. How much does one ride cost?   ii. Chantal paid GHC80 for a shirt that was on sale at a discount of $20 \%$. What was the original price?   iii. A cell phone which regularly sells for GH\$450 is on sale for $40 \%$ off. How much would you pay for the phone?   iv. A woman put GHC520 into a savings account for one year. The rate of interest on the account was $6 \%$. How much was the interest for the year?   v. During the first hour 250 tickets to a concert were sold. At this rate how long will it be before I 500 tickets are sold?
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.


Date:		DAY:				Subject: Mathematics				
Duration:						Strand: Algebra				
Class: B7		Class Size:				Sub Strand: Patterns and Relations				
Content Standard:   B7.2.I.I Derive the rule for a set of points of a relation, draw a table of values to graph the relation in a number plane and make predictions about subsequent elements of the relation.			Indicator:   B7.2.I.I.I Extend a given relation presented with and without symbolic materials and explain how each element differs from the preceding one.							$\begin{aligned} & \text { sson: } \\ & \text { of } 3 \end{aligned}$
Performance Indicator:   Learners can predict subsequent elements in a given pattern						Core Competencies:   Critical Thinking and Problem solving (CP)				
References: Mathematics Curriculum Pg. 27-28										
Phase/Duration	Learners Activities									Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.									
PHASE 2: NEW LEARNING	Guide learners to extend a given symbolic relation.   Let learners study the pattern made with match sticks below and draw the fifth pattern.   Learners to analyze How each pattern differ from the pattern that comes before it?   Have learners to copy and complete the table for the number of sticks in each pattern.									Abacus, Color coded materials, place value chart, Number facts flash cards; Flashcards



## SECOND TERM WEEKLY LESSON NOTES

WEEK 4

Date: $3^{\text {RD JUNE, }} 2022$			Subject: Mathematics	
Duration:			Strand: Algebra	
Class: B7		Class Size:	Sub Strand: Patterns and Relations	
Content Standard:   B7.2.I.I Derive the rule for relation, draw a table of valu relation in a number plane about subsequent elemen	set of points of a es to graph the nd make predictions of the relation.	Indicator:   B7.2.I.I. 2 Describe the rule for a given relation using mathematical language such as one more, one less, one more than twice, etc		Lesson:   2 of 3
Performance Indicator:   Learners can describe the rule for a given relation			Core Competencies:   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 27-28				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.			
PHASE 2: NEW LEARNING	Guide learners to describe given relations.   To get the rule for a given relation, first identify how each pattern differs from the other.   For example, in the relation below, all the numbers in the domain are square root of the numbers in the co-domain. Or all the members in the co-domain are square of the numbers in the domain. Therefore, we can describe the rule for this relation as " $y=x^{2}$ ".   Example:   Domain   To get the rule for a given relation, first identify how each pattern differs from the other. For example, in the relation below, all the			Abacus, Color coded materials, place value chart, Number facts flash cards; Flashcards




	between elements in the co-domian and domain. If the ${ }^{\text {st }}$ difference are the same then we use the formula $y=a x+$ b $\mathrm{a}=\frac{\text { constant difference of co-domain }}{\text { constant difference of domain }}$      therefore $\mathrm{a}=\frac{6}{3}=2$   Now we find $b$, which is a constant to be determined using $x=3$ and $y=5$. $\begin{aligned} & y=a x+b \\ & 5=2(2)+b \\ & b=5-4 \\ & b=1 \end{aligned}$   therefore the rule is $y=2 x+1$   Have learners practice with more examples in their workbooks.   Assessment   I. Find the rule for the following patterns	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES <br> WEEK 5

Date: $10^{\text {th }}$ JUNE, 2022	Period:		Subject: Mathematics	
Duration:			Strand: Algebra	
Class: B7	Class Size:		Sub Strand: Algebraic Expressions	
Content Standard:   B7.2.2.I Simplify algebraic four basic operations and evaluate algebraic expres	pressions involving the stituting values to s.	Indicat B7.2.2.I express translat an algeb	eate simple algebraic using simple logic to of instructions into expression.	Lesson:   I of 2
Performance Indicato Learners can identify the problem with an equation	nown in a problem; repr and solve the problem con	sent the retely	Core Competenc Communication a Critical Thinking	Collaboration (CC)   Problem solving (CP)
References: Mathema	Curriculum Pg. 35-36			
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Using questions and a learners already know   Share learning indicators	swers, about   s and in	w to find out what raic Expressions.   duce the lesson.	
PHASE 2: NEW   LEARNING	Brainstorm learners f   Algebra is a way to w values.   Look at this question   We already know the the question, the othe   We are already used representing the unkn   But in Algebra, it is re $\mathrm{c}, \mathrm{x}, \mathrm{y}$ etc.)   Hence this how the q $5+a=8$   We call this an Equati question which involv between.   Let's see how we can E.g. A farmer cultivates ap them when they ripped fo On a particular tree, he pluch left on the tree. So how m	the $m$ rk out p $5+?=$   answer, is unkn   "blank wn num   laced w   estion   n. Equa stwo p   olve pro ples on a sale. cked I5 ny apples	g of Algebra ems with unknown   nly know one part   es" and "dashes" for   variable such as (a,   written   is a mathematical with an equal sign in   using Algebra.   scale of land. He plucks   apples and 8 apples there on the tree?	Counters, bundle and loose straws base ten cut square, Bundle of sticks


	Let's use the letter "a" to represent the total number of apples on the tree.   Thus a $-15=8$   (a-I5) is on one side of the equal sign and the other side 8 as the answer.   To work out for "a", we need to isolate "a", so that is on its own.   Have learners to get rid of the (-15). So we add the inverse of $(-15)$, that is $(+15)$ to both side of the equation. $\begin{aligned} & a-15+15=8+15 \\ & a-15+15=8+15 \\ & a=8+15 \\ & a=23 \end{aligned}$   Have learners to conclude that the total number of apples on the tree was 23 . So if the farmer pluck 15 , it will be left with 8.   Guide learners to solve for $x$ in simple equations $\begin{aligned} & \text { e.g. } x+3=6 \\ & x+1+5=7 \end{aligned}$   Assessment: Give similar problems for learners to write the mathematical equation statements of the problem	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	


Date: $10^{\text {th }}$ JUNE, 2022		Subject: Mathematics	
Duration:		Strand: Algebra	
Class: B7		Sub Strand: Algebraic Expressions	
Content Standard:   B7.2.2.I Simplify algebraic expressions involving the four basic operations and substituting values to evaluate algebraic expressions.		Indicator:   B7.2.2.I.I Create simple algebraic expressions using simple logic to translate a set of instructions into an algebraic expression.	Lesson:   I of 2
Performance Indicator:   Learners can create a problem for a given equation		Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 35-36			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.		
PHASE 2: NEW LEARNING	Guide learners to create word problems for equations. e.g. Jenny has 7 marbles and ken has 5 . How many do they have together?   The quantities here are Jenny's marbles, ken's marbles and total marbles. The relationship between the three is Jenny's Marbles + Ken's Marbles = Total Marbles $7+5=$ $\qquad$   Let learners solve several examples.   Let learners now consider this problem; e.g. Jenny and Ken together have 37 marbles, and ken has 15. How many does jenny have?   The relationship between the quantities is the same as the above. $\begin{aligned} \text { Jenny's Marbles }+ \text { Ken's Marbles } & =\text { Total Marbles } \\ + & +15 \end{aligned}$   The problem requires we find Jenny's marbles which we don't know.   So we represent Jenny's marbles as " $a$ " $a+15=37$   Guide learners to solve the equation		Counters, bundle and loose straws base ten cut square, Bundle of sticks


	Introduce learners to more complex word problems. Consider this example.:   Example: Peny, Keny And Peny together have 5I marbles. Keny has double as many marbles as Jenny has, and Peny has I2. How many does Jenny have?   The relationship between the quantities is the same as the above. However we need to denote the number of Jeny's and Keny's marbles with something. Jenny's marbles are unknown, so we can denote that with the variable " $n$ ". then Keny has $2 n$ marbles. $\begin{aligned} & \text { Jenny's }+ \text { Ken's }_{\text {Marbles }}^{\text {Marbles }}+{ }_{\text {Peny's }}^{\text {Parbles }}=\stackrel{\text { Total }}{\text { Marbles }} \\ & n+2 n+12=51 \end{aligned}$   Guide learners to solve the equation.   Ask learners to describe stories that the equation $14-\mathrm{x}=9$ could represent.   That is: henry has 14 oranges in his bag. He gave some of the oranges to his friends. He now has 9 oranges left. How many oranges did he give to his friends?   Let learners describe stories to represent the following equations.   a. $1+15=9+x$   b. $8+x=3+12$   c. $4+5=11-x$   d. $3+x=13-2$   Assessment   Solve the puzzle	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

WEEK 6

Date: $17^{\text {th }}$ JUNE, 2022	DAY:	Subject: Mathematics	
Duration:		Strand: Algebra	
Class: B7	Class Size	Sub Strand: Algebraic Expressions	
Content Standard:   B7.2.2.I Simplify algebraic expressions involving the four basic operations and substituting values to evaluate algebraic expressions.		Indicator:   B7.2.2.I. 2 Perform addition and subtraction of algebraic expressions with rational coefficients.	Lesson:   I of 2
Performance Indicator:   Learners can perform addition and subtraction of algebraic expressions		Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 36-37			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Using questions and answers, review to find out what learners already know about Algebraic Expressions.   Share learning indicators and introduce the lesson.		
PHASE 2: NEW LEARNING	Guide learners to add algebraic expressions.   Let learners understand that, only like terms can be added or subtracted to give a single term.   Example:   1). $4 x+3 x+x=8 x$   2). $5 x+4 x+2 x+3 x=14 x$   3). $s+s+s+t+t+k+k+k$ $=3 s+2 t+3 k$   Engage learners to practice with more examples. Go round the class and provide assistance to the slow learners.   Perform activities like "think of a number" game with pupils   E.g. think of a number, add 2 to it and multiply the sum by 3. $=(x+2) \times 3=3 x+6$   Think of another number, multiply it by 2 , add 4 to the result i.e. $(y-2)+4=2 y+4$   Add the results; $(3 x+6)+(2 y+4)=3 x+2 y+10$   Write an expression for the perimeter of the following shapes		Counters, bundle and loose straws base ten cut square, Bundle of sticks, rectangular cut out, bottle tops, algebra tiles



	4. $4 x^{2} y+5 x y^{2}+3 x^{2} y-2 x y^{2}$   5. $x^{2}+x+2 x^{2}$	
PHASE 3:	Use peer discussion and effective questioning to find out   from learners what they have learnt during the lesson.	
	Take feedback from learners and summarize the lesson.	



	$=\frac{3}{4} \times\left(x^{2}\right)^{*}\left(y^{-2}\right)=\frac{3}{4} x^{2} y^{-2}$   E.g. II. $\frac{-30 a b c}{6 a b^{3} c^{-2}}$ $\begin{aligned} & =\frac{-30}{6} *(a-a)\left(b^{1-3}\right)\left(c^{-1-3}\right) \\ & =-5 *\left(b^{-2}\right)\left(c^{-4}\right)=-5 b^{-2} c^{-4} \end{aligned}$   Assessment   Simplify the following expression:   I. $5 p \times 7 p^{2}$   2. $6 x y^{3} \times 4 x^{5} y^{6}$   3. $-2 b \times 5 \mathrm{a} \times 9 \mathrm{c}$   4. $-3 x y^{5} \times 7 y$   5. $\frac{18 x^{5} y^{2}}{24 x^{7} y^{2}}$	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

## WEEK 7

Date: $24^{\text {th }}$ JUNE, 2022 DAY:	Subject: Mathematics	
Duration:	Strand: Algebra	
Class: B7 ${ }^{\text {Class Size: }}$	Sub Strand: Algebraic Expressions	
Content Standard:   B7.2.2.I Simplify algebraic expressions involving the four basic operations and substituting values to evaluate algebraic expressions.	Indicator: B7.2.2. I. 4 Substitute values to evaluate algebraic expressions.	Lesson:   I of 2

Performance Indicator:
Learners can substitute values to evaluate algebraic expressions

Core Competencies:
Communication and Collaboration (CC)
Critical Thinking and Problem solving (CP)

References: Mathematics Curriculum Pg. 39-40

Phase/Duration	Learners Activities	Resources
PHASE I: STARTER	Using questions and answers, review to find out what learners already know about Algebraic Expressions.   Share learning indicators and introduce the lesson.	
PHASE 2: NEW LEARNING	Guide learners to substitute values to evaluate algebraic expressions..   Let learners note the following rules when substituting values.   $a b$ means the product of $a$ and $b$. That is $a \times b$.   $2 a$ means the product of the quantities 2 and $a$. That is $2 \times a$.   $a^{2}$ means the square of $a$. That is $a \times a$.   $3 a$ means the product of the quantities 3 and $a$. that is $3 \times a$. $a^{3}$ means the third power of $a$. that is $a \times a \times a$.   - d means - I x dor-Id.   $3 a b^{2}$ means $3 \times a \times b^{2}$ or $3 \times a \times b \times b$.   Example:   Simplify the following expressions and substitute the values to evaluate them,   if $x=2, y=4, p=3$ and $z=-1$, $\begin{aligned} & \text { I. } 3 x y \times 5 y \\ & =(3 \times 2 \times 4) \times(5 \times 4) \\ & =24 \times 20 \\ & =480 \end{aligned}$ $\begin{aligned} & \text { II. } 7 x y+5 x-4 x+2 x y-3 \\ & =(7 \times 2 \times 4)+(5 \times 2)-(4 \times 2)+(2 \times 2 \times 4)-3 \\ & =56+10-8+16-3 \\ & =71 \end{aligned}$	Counters, bundle and loose straws base ten cut square, Bundle of sticks, rectangular cut out, bottle tops, algebra tiles


	Have learners practice with more examples.   Guide learners to simplify the following expressions and substitute the values to evaluate them, if $x=2, y=4, a=3, \mathrm{~b}=2, z=\mathrm{I}$ and $\mathrm{c}=-\mathrm{I}$, $\text { i. } \frac{8 x y z}{16 x y}$   to solve this, we first simplify the expression. $\frac{8 x y z}{16 x y}=\frac{1}{2} *(x-x) *(y-y) * \mathbf{z}$   Now substitute the values $=\frac{1}{2} * \mathrm{z}=\frac{1}{2} * \mathrm{I}=\frac{1}{2}$   Let learners practice with more examples.   Assessment   Simplify the following expressions and substitute the values to evaluate them,   If $x=2, \mathrm{y}=4, \mathrm{p}=4$ and $\mathrm{z}=-1$   I. $4 \mathrm{p} \times 8 \mathrm{z}^{2}$   2. $5 x+4-9 y+3 x+2 y-7$   3. $7 x y+5 x-4 x+2 x y-3$   4. $\frac{18 x p^{3}}{24 x z}$   5. $\frac{12 x^{3} y^{2}}{16 x y^{4}}$   6. $\frac{-30 a b p}{6 a b^{3} c^{2}}$   7. If $x=5, a=8, \mathrm{~b}=3, \mathrm{~h}=6$, find the perimeter and area of the following shapes.	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	



	$=\left(180 p^{3} q^{2} x^{5} y^{3}\right) \div(1620 p q x y)$   We then write it in fraction $\begin{aligned} & =\frac{180 p^{3} q^{2} x^{5} y^{3}}{1620 p q x y} \\ & =9 p^{2} q x^{4} y^{2} \end{aligned}$   Guide learners to practice with more examples.   Assessment   1. $8 x y z \div 16 x y \times 2$   2. $5 a b^{2} \times 3 a^{2} b \div a b$   3. $4 x+7-2 x+4 \times 7 x$   4. $(h+7)-(h-8)$   5. $(e+f+g)-(e-f+g)$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

## WEEK 8

			Subject: Mathematics	
Duration:			Strand: Algebra	
Class: B7	Class Size:		Sub Strand: Variables and Equations	
Content Standard:   B7.2.3.I Demonstrate an understanding of linear equations of the form $\mathrm{x}+\mathrm{a}=\mathrm{b}$ (where a and b are integers) by modelling problems as a linear equation and solving the problems concretely, pictorially, and symbolically..		Indicator:   B7.2.3.I.I Translate word problems to linear equations in one variable and vice versa.		Lesson:   I of 2
Performance Indicator:   Learners can translate word problems to linear equations in one variable and vice versa			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 40-42				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Can you work out what pyramid?   Write on the board: $x+7$   Ask learners;   i. to identify the unknow   ii. What is the value of $x$ ?   Give some minutes to s answers with the class.   Share learning indicator	umber will b $\square$   variable. (A   ve the probl	at the top of the   12   3   swer: $x$ )   m and share their   the lesson.	
PHASE 2: NEW LEARNING	Guide learners to use their inverses to solve i. Think of a number, is 4 I . What was the The flag diagr   i.e. $2 x-7=4$ I	flag diagra equations. uble it and iginal numb is:	for equations and subtract 7 . The result r? $2 x-7$ $\square$ 41	Counters, bundle and loose straws base ten cut square, Bundle of sticks, rectangular cut out, bottle tops, algebra tiles


	To solve the equation, move in the opposite direction and do the inverse of the operations.   Guide learners to translate word problems to linear equations.   i. The sum of the ages of two friends is 25 , and the older one is 4 times that of the younger one. Write this as a mathematical sentence?   i.e. let the age of the younger one be x :.the age of older one $=4 x$ $4 x+x=25$   ii. Adaako and Afrakoma shared 40 oranges. Afrakoma had 6 more than Adaako. Write a mathematical sentence for this word problem.   i.e. let x represent Adaako's share. $\therefore$ Afrakoma's share is $x+6$ and their share put together gives 40 . $\therefore x+(6+x)=40$   Have learners write word problems for given linear equations   i. $x+x=15$   i.e. the sum of two equal numbers is 15   ii. $2 x-4=12$   i.e. when 4 is taken away from 2times a certain number, the result is 12 .   iii. $\frac{2}{3} x=4$   i .e. two-thirds of a certain number is 4 .   Assessment   Ask students to describe two different stories that the equation $5+\mathrm{k}=9$ could represent.   First story: A book has 9 pages. Niko has 5 pages left to read. How many pages has he read?   Second story: The sum of a number k and 5 is equal to 9 . What is the number?   Give learners more equations for them make up more stories from them	
PHASE 3:   REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	



	Guide learners to model and solve linear equations set with objects on a balance. $\begin{gathered} x+3=7 \\ x+3-3=7-3 \\ x=4 \end{gathered}$ $\begin{gathered} 5 x+1=3 x+5 \\ 5 x-3 x+1=3 x-3 x+5 \\ 2 x+1=5 \\ 2 x+1-1=5-1 \\ 2 x=4 \end{gathered}$ $\begin{aligned} 3 y+4 & =2 y+8 \\ 3 y-2 y+4 & =2 y-2 y+8 \\ y+4 & =8 \\ y+4-4 & =8-4 \\ y & =4 \end{aligned}$   Model and guide learners to solve linear equations set with shapes on a balance   i. In each balance the mass of one shape is given in grams. Find the mass of the other shape.   Find $\triangle$ if $\rangle$ is 10 .   ii. In each balance the mass of one rhombus is 12 grams. Find the mass of the pentagon.	


	Assessment   Have learners to solve puzzle in the figure, by solving the equations in each line. $\begin{aligned} & \bullet+\bullet \times \Delta+\bullet=60 \\ & +\bullet+\bullet=40 \\ & +\Delta+\Delta=20 \end{aligned}$   아우우둥 39        	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

## WEEK 9

Date: $8^{\text {th }}$ JULY, 2022		DAY:	Subject: Mathematics	
Duration:			Strand: Algebra	
Class: B7	Class Size:		Sub Strand: Variables and Equations	
Content Standard:   B7.2.3.I Demonstrate an understanding of linear equations of the form $\mathrm{x}+\mathrm{a}=\mathrm{b}$ (where a and b are integers) by modelling problems as a linear equation and solving the problems concretely, pictorially, and symbolically..		Indicator:   B7.2.3.I. 3 Model linear equations, then write mathematical expressions and describe the process of solving the equation using algebraic tiles.		Lesson:   I of 2
Performance Indicator:   Learners can solve linear equations in one variable at both sides of the equal sign.			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 40-42				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners Call volunteer learner questions.   Introduce the lesson	the previo to the boar   sharing pe	s lesson. d to solve sample   formance indicators.	
PHASE 2: NEW LEARNING	Guide learners to solv sides of the equal sign.   If an equation contain equal sign, group all 'lik Example: $\text { i. } \begin{aligned} & 5 x+3=4 x+17 \\ & 5 x-4 x=17-3 \\ & x=14 \end{aligned}$   ii. $\quad 6 x-2=4 x-1$   Sometimes it is easier side. $\begin{aligned} & 6 x-4 x=-1+2 \\ & 2 x=1 \\ & x=\frac{1}{2} \end{aligned}$   Engage learners to pra   Have learners discuss equations containing   Expand to remove brack brackets. Let learners	equations   variables on terms' on   we group lik simplify bo   (grouping group the   (simplify (divide   tice with $m$   he steps involv ackets.   kets, when e mindful of	with the letter on both   both sides of the one side.   ke terms)   h sides)   ke terms)   m on the right hand   both sides)   oth sides by 2)   ore examples.   olved in solving   ever equations contains f negative numbers.	Counters, bundle and loose straws base ten cut square, Bundle of sticks, rectangular cut out, bottle tops, algebra tiles


	Example:   i. $3(x-2)=x+8$ (expand to remove brackets) $3 x-6=x+8 \quad$ (group like terms) $3 x-x=8+6 \quad$ (simplify both sides)   $2 x=14$   (divide both sides by 2 )   ii. $\begin{array}{ll} 2(a+1)=14+a & \text { (expand to remove brackets) } \\ 2 a+2=14+a & \text { (group like terms) } \\ 2 a-a=14-2 & \text { (simplify both sides) } \\ a=12 & \end{array}$   Engage learners to practice with more examples.   Assessment   I. $5 x-3=3 x+7$   2. $8 x+1=2 x+5$   3. $y+18=-6 y-3$   4. $2 x+3=7-3 x$   5. $4-7 x=3 x+4$   6. $2(x-1)=3(x-6)$   7. $3 x-5=-1(x-3)$   8. $2(p+9)=3-p$   9. $4(3 m-7)=9(m+3)$   10. $16=12(a+5)+5-\mathrm{a}$	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	


Date: $8^{\text {h }}$ JULY, 2022		DAY:	Subject: Mathematics		
Duration:			Strand: Algebra		
Class: B7		Class Size:	Sub Strand: Variables and Equations		
Content Standard:   B7.2.3.I Demonstrate an understanding of linear equations of the form $\mathrm{x}+\mathrm{a}=\mathrm{b}$ (where a and b are integers) by modelling problems as a linear equation and solving the problems concretely, pictorially, and symbolically..		Indicator:   B7.2.3.I. 4 Solve linear equations in containing fractions			Lesson: $2 \text { of } 2$
Performance Indicator:   Learners can solve linear equations in containing fractions			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)		
References: Mathematics Curriculum Pg. 40-42					
Phase/Duration	Learners Activities			Resources	
PHASE I: STARTER	Using questions and answers, review to find out what learners already know about Algebraic Expressions.   Share learning indicators and introduce the lesson.				
PHASE 2: NEW LEARNING	Guide learners to solve learners to equations containing fractions.   To solve equations containing fractions, we change the fractions to whole numbers by first multiplying each term of the equation by the LCM of the denominators, Example:   i. $\frac{2 x-1}{3}-\frac{x-2}{4}=1 \quad$ (multiply through with the LCM of I2) $\begin{aligned} & 12 \times \frac{2 x-1}{3}-12 \times \frac{x-2}{4}=1 \times 12 \\ & 4(2 x-1)-3(x-2)=12 \\ & 8 x-4-3 x+6=12 \\ & 8 x-3 x=12-6+4 \\ & 5 x=10 \\ & x=2 \end{aligned}$ $4(2 x-1)-3(x-2)=12 \quad \text { (expand to remove brackets) }$ $8 x-4-3 x+6=12 \quad \text { (group like terms) }$ $8 x-3 x=12-6+4 \quad \text { (simplify both sides) }$ (divide both sides by 5)   ii. $\frac{x}{4}+\frac{3}{5}=\frac{3 x}{2}-2 \quad$ (multiply through with the LCM of 20) $\begin{array}{ll} 20 \times \frac{x}{4}+20 \times \frac{3}{5}=20 \times \frac{3 x}{2}-20 \times 2 \\ 5 x+12=30 x-40 & \text { (group like terms) } \\ 12+40=30 x-5 x & \text { (simplify both sides) } \\ 52=25 x & \text { (divide both sides by 25) } \\ x=\frac{52}{25} & \end{array}$   iii. $\frac{7}{13}=\frac{x}{52} \quad$ (cross multiply)			Counters, bundle and loose straws base ten cut square, Bundle of sticks, rectangular cut out, bottle tops, algebra tiles	


	$\begin{array}{ll} \hline 13 \times x=7 \times 52 & \text { (simplify both sides) } \\ 13 x=364 & \text { (divide both sides by } 13 \text { ) } \\ \mathrm{x}=28 & \end{array}$   Engage learners to practice with more examples.   Assessment   I. $\frac{2}{3}(3 y-1)-(y+2)=\frac{1}{3}$   2. $\frac{4 x-3}{2}=\frac{8 x-10}{8}+2 \frac{3}{4}$   3. $\frac{3^{2}}{14}(x+1)+1=\frac{1}{2}(x-2)+5$   4. $\frac{1}{x}+\frac{1}{3}=1$   5. $2=\frac{6}{x-2}$	
PHASE 3: REFLECTION	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

WEEK IO

Date: $15^{\text {th }}$ JULY, 2022	DAY:	Subject: Mathematics	
Duration:		Strand: Geometry \& Measurement	
Class: B7	Class Size:	Sub Strand: Shape and Space	
Content Standard:   B7.3.I.I Demonstrate understanding of angles including adjacent, vertically opposite, complementary, supplementary and use them to solve problems.		Indicator:   B7.3.I.I.I-2 Measure and classify angles according to their measured sizes - right, acute, obtuse and reflex.	Lesson:   I of 2
Performance Indicator:   Learners can measure angles using the protractor.   Learners can classify angles into right, acute, obtuse and reflex.		Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 47-49			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Revise with learners on the pr Call volunteer learners to the questions.   Introduce the lesson by sharin	us lesson. ad to solve sample   rformance indicators.	
PHASE 2: NEW LEARNING	Guide learners to sort angles acute, obtuse or reflex angles worksheets with several angle   Use a protractor to draw ang 750, 90o, 120o, 150o, 270o, 3   Guide learners to apply the fa   (i) complementary angles are of $90^{\circ}$, and   (ii) supplementary angles are of $180^{\circ}$ to solve problems.	those which are right photocopied measure.   uch as 30o, 45o, 60o, etc.   .   at;   angles that have a   sum   ary   angles that have a sum	Empty chalk boxes, tins, cut out shapes from cards.


	Guide learners to determine the angle(s) marked with letters in the complementary and supplementary angles. Example: determine the missing angle marked x .   Since complementary angles sum up to $180^{\circ}$, $x+x-25=180^{\circ} \quad$ (group like terms)   $x+x=180+25 \quad$ (simplify both sides)   $2 x=205 \quad$ (divide through by 2 )   $x=\frac{205}{2}$   $x=102.5^{\circ}$   E.g.2. determine the missing angle marked x .   Since complementary angles sum up to $90^{\circ}$, $x+62=90^{\circ} \quad$ (group like terms)   $x=90-62$ (simplify both sides)   $x=28^{\circ}$   Engage learners to practice with more examples.	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	


Date: $15^{\text {th }}$ JULY, 2022	DAY:	Subject: Mathematics	
Duration:		Strand: Geometry \& Measurement	
Class: B7	Class Size:	Sub Strand: Shape and Space	
Content Standard:   B7.3.I.I Demonstrate understanding of angles including adjacent, vertically opposite, complementary, supplementary and use them to solve problems.		Indicator:   B7.3.I.I. 3 Use adjacent, supplementary and vertically opposite angles to solve problems	Lesson:   I of 2
Performance Indicator:   Learners can solve problems using adjacent, supplementary and vertically opposite angles		Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 47-49			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.		
PHASE 2: NEW LEARNING	Guide learners to determine the angle(s) marked with letters in the adjacent and/or supplementary.   Guide learners to identify each pair of angles as adjacent, vertically opposite, complementary or supplementary.   d)   Use the figure at the right to identify and label the following angles   i. two acute vertical angles.   ii. two obtuse vertical angles.   iii. a pair of adjacent angles   iv. a pair of complementary angles.   v. an angle supplementary to FGE $\angle$		Empty chalk boxes, tins, cut out shapes from cards.


	Guide learners to use adjacent, vertically opposite,   complementary or supplementary to solve problems.   Determine the angle(s) marked with letters	
	Use peer discussion and effective questioning to find out   from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	
REFLECTION		

## SECOND TERM WEEKLY LESSON NOTES <br> WEEK II

Date: $22^{\text {nd }}$ JULY, 2022		DAY:	Subject: Mathematics	
Duration:			Strand: Geometry \& Measurement	
Class: B7		Class Size:	Sub Strand: Shape and Space	
Content Standard:   B7.3.1. 2 Demonstrate how to construct a perpendicular to a line from a given point			Indicator:   B7.3.1.2.I Construct a line segment perpendicular to another line segment.	Lesson: $\text { I of } 2$
Performance Indicator:   Learners can construct a line segment perpendicular to another line segment			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 51-52				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Show learners the pair of compasses and ask, what can we do with a pair of compasses?   Allow learners to brainstorm.   Introduce the lesson by sharing performance indicators.			
PHASE 2: NEW LEARNING	Brainstorm learners to explain the following;   A construction is a geometric drawing that is made using only an unmarked straightedge and a compass.   A compass is a geometric tool used to draw a circle or a part of a circle, called an arc.   Guide learners to use a pair of compasses and a ruler to construct a copy of a given line segment.   For instance:   To construct a line segment, CD, congruent to a given line segment, AB:   Step I: Draw a ray with endpoint C.   C   Step 2: Open the compass to the length of $\overrightarrow{A B}$			Rule, pencil , a pair of compass, a pair of divider and protractor.


	Step 3: With the same compass setting, put the compass point on C. Construct an arc that intersects the ray. Label the intersection D.   Let learners practice with more examples.   Guide learners to use a pair of compasses and ruler to construct a perpendicular at a point on a line segment, and drop a perpendicular from a given point outside a line segment.   i. To construct a perpendicular to a given line, $M$, at a given point, $P$, on $M$ :   Given:   Step I: Place the compass tip on P. Construct arcs intersecting line $m$ at the two points, $A$ and $B$.   Step 2: Widen the compass to construct two intersecting arcs above point $P$, one with the center at $A$ and one with the center at B. Label the intersection $C$.   Step 3: Step 3: Draw $\overrightarrow{C P}$.   Guide learners to construct a perpendicular from a given point outside a line segment.   ii. To construct a perpendicular to a given line, m: from a given point, P , not on m .   Given:   Step I: Place the compass tip on P. Construct arcs intersecting line $m$ at the two points, $A$ and $B$.   Step 2: Using the same compass setting, construct two intersecting arcs, one with the center at $A$ and another with the center at $B$. Label the intersection $C$.   Step 3: Draw $\overrightarrow{C P}$.   Assessment   Engage learners to practice with several examples.	


PHASE 3:		
REFLECTION	Use peer discussion and effective questioning to find out   from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	


Date: 22 ${ }^{\text {nd J J ULY, } 2022 ~}$		DAY:	Subject: Mathematics	
Duration:			Strand: Geometry \& Measurement	
Class: B7		Class Size:	Sub Strand: Shape and Space	
Content Standard:   B7.3.1. 2 Demonstrate how to construct a perpendicular to a line from a given point, bisect a line, bisect angles, and construct angles of the following sizes: $30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$ and $90^{\circ}$		Indicator:   B7.3.1.2.2: Construct the perpendicular bisector of a line segment		sson:   of 2
Performance Indicator:   Learners can construct the perpendicular bisector of a line segment			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 51-52				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.			
PHASE 2: NEW LEARNING	Guide learners to construct a perpen segment.   To construct a per   Step I: Put the compas point $A$ and construct sure the opening is gre half $\overrightarrow{A B}$   Step 2: Put the compos point B and construct the points where the $t$ intersect as $X$ and $Y$.   Step 3: Draw $\overrightarrow{X Y}$. Lab intersection of $\overrightarrow{A B}$ and $\overrightarrow{X Y}$ is a perpendicular Point $M$ is the midpoin   Assessment   I. Draw and   a. $\overrightarrow{A B}=8$   b. $\overrightarrow{A B}=5$	pair of com ar bisector   dicular at a   int on   . Be   than   int on   Label   cs   as point $M$. or of $\overrightarrow{A B}$.   $\overrightarrow{A B}$   the follow	passes and a ruler to of a given line   point on a line segment   ing lines	Rule, pencil, a pair of compass, a pair of divider and protractor.


PHASE 3:		
REFLECTION	Use peer discussion and effective questioning to find out   from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

## SECOND TERM WEEKLY LESSON NOTES

## WEEK 12

Date: $\mathbf{2 9}^{\text {TH }}$ JULY, 2022		DAY:	Subject: Mathematics	
Duration:			Strand: Geometry \& Measurement	
Class: B7		Class Size:	Sub Strand: Shape and Space	
Content Standard: B7.3.I. 2 Demonstrate how to construct a perpendicular to a line from a given point			Indicator:   B7.3.I.2.3: Copy and bisect angles	Lesson:   I of 2
Performance Indicator: Learners can copy and bisect angles			Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 51-52				
Phase/Duration	Learners Activities			Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.			
PHASE 2: NEW LEARNING	Guide learners to use a pair of compasses and a ruler to copy a given angle $A$.   Steps:   Draw a line and locate point B; copy the arc ST and transfer using B as center to obtain VW , join B and W to obtain the copied angle.   Sseps?   Stresa 4			Rule, pencil , a pair of compass, a pair of divider and protractor.


	Guide learners to construct an angle <DEF congruent to angle $A B C$   Step I: put the compass point on B. construct an arc that intersects both rays of the angle at P and Q .   Step 2: use a straightedge to draw a ray with endpoint E . with the compass point on E , and the same compass opening as in step I, construct an arc that intersects as the ray at F .   Step 3: open the compass to measure the length PQ . With the same compass opening and the compass point on F ., construct an arc that intersects the other arc at $D$. draw ED   Guide learners to perform geometric construction to bisect a given angle.   (i) Sketch any acute angle and label it AAAACC.   (ii) Copy the angle, measure and record its value.   (iii) Sketch any angle and ask a colleague to copy the angle.	
$\begin{aligned} & \text { PHASE 3: } \\ & \text { REFLECTION } \end{aligned}$	Use peer discussion and effective questioning to find out from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	


Date: 29 ${ }^{\text {th }}$ JULY, 2022		Subject: Mathematics	
Duration:		Strand: Geometry \& Measurement	
Class: B7	Class Size:	Sub Strand: Shape and Space	
Content Standard:   B7.3.1.2 Demonstrate how bisect a line, bisect angles, and construct angles of the following sizes: $30^{\circ}, 45^{\circ}$, $60^{\circ}, 75^{\circ}$ and $90^{\circ}$		Indicator:   B7.3.1.2.4: Construct angles of $90^{\circ}$ and $45^{\circ}$	Lesson:   2 of 2
Performance Indicator:   Learners can construct angles of $90^{\circ}$ and $45^{\circ}$		Core Competencies:   Communication and Collaboration (CC)   Critical Thinking and Problem solving (CP)	
References: Mathematics Curriculum Pg. 51-52			
Phase/Duration	Learners Activities		Resources
PHASE I: STARTER	Revise with learners on the previous lesson. Call volunteer learners to the board to solve sample questions.   Introduce the lesson by sharing performance indicators.		
PHASE 2: NEW LEARNING	Guide learners to use construct an angle of Raise a perpendicular and verify using the pr perpendicular to $P A$ t   Have learners constru angle of $90^{\circ}$.   Assessment   I. Construct $<\mathrm{ABC}=$ $\|B C\|=6 \mathrm{~cm}$. bisect   II. Construct $<\mathrm{ABC}=$	pair of compasses and a ruler to a point) on a given line segment tractor. (The line segment $P \mathrm{~T}$ is refore $\angle A P T=90^{\circ}$   $x^{0}$   ${ }^{\circ}$   an angle of $45^{\circ}$ by bisecting an   $45 \circ$ such that $\|A B\|=5 \mathrm{~cm}$ and ABC $=450$   $90^{\circ}$ and bisect it.	Rule, pencil, a pair of compass, a pair of divider and protractor.


PHASE 3:		
REFLECTION	Use peer discussion and effective questioning to find out   from learners what they have learnt during the lesson.   Take feedback from learners and summarize the lesson.	

